——习在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求
1949年,伴随着新中国的诞生,中国科学院成立。作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +
中国科学院院级科技专项体系包括战略性先导科技专项、重点部署科研专项、科技人才专项、科技合作专项、科技平台专项5类一级专项,实行分类定位、分级管理。
DG视讯·(中国区)官方网站
为方便科研人员全面快捷了解院级科技专项信息并进行项目申报等相关操作,特搭建中国科学院院级科技专项信息管理服务平台。了解科技专项更多内容,→
中国科学技术大学(简称“中国科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中国科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。
中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年经教育部批准更名为中国科学院大学。国科大实行“科教融合”的办学方针,与中国科学院直属研究机构(包括所、院、台、中心等),在管理体制、师资队伍、培养体系、科研工作等方面高度融合,是一所以研究生教育为主的独具特色的高等学校。
DG视讯·(中国区)官方网站
上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,由上海市人民政府主管,2013年经教育部正式批准。上科大致力于服务国家经济社会发展战略,培养科技创新创业人才,努力建设一所小规模、高水平、国际化的研究型、创新型大学。
DG视讯·(中国区)官方网站
利用“散射增强轨道流”这一反常物理效应(左图),实现自旋电子器件功耗的大幅降低(右图)。(中国科学院宁波材料技术与工程研究所供图)
中国学者揭示了一项可显著降低自旋电子器件能耗的物理机制。中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队发现,利用电子“轨道”属性遵循的非传统标度律,能化电子运动阻力为性能增益。相关研究成果于北京时间8月15日在线发表于国际学术期刊《自然-材料学》。
记者获悉,该研究成果为突破传统自旋电子学的性能瓶颈、设计超低功耗器件提供了全新的物理原理和设计思路。
宁波材料所研究员汪志明介绍,随着人工智能与大数据的发展,传统电子技术正逼近性能极限,“功耗墙”成为制约技术发展的瓶颈。为此,科学家们将目光投向了自旋电子学这一前沿领域。新一代自旋电子器件在理论上具备了高速、非易失等优势,并被视为突破“功耗墙”的潜力技术。
然而,影响自旋电子器件“自旋流”产生效率的两个关键指标,即自旋霍尔角和自旋霍尔电导相互制约,传统方法难以同时优化,导致器件总体写入功耗过高。宁波材料所团队取得关键突破,将目光转向了电子的另一属性——轨道。
研究发现,当电子在材料中运动时,过去被认为是纯粹“绊脚石”的晶体缺陷,在与电子的轨道角动量相互作用时,反而起到了“加油站”的作用。引入的缺陷越多,电子散射越频繁,最终探测到的轨道效应反而越强。这揭示了一种全新的“反常标度律”,从实验上证实了电子“轨道”在输运过程中,遵循着与“自旋”截然不同的独特物理规律。
该研究结果表明,利用“反常标度律”,通过主动引入缺陷,能够实现轨道霍尔角和轨道霍尔电导的同时增大,从而一举突破传统方法的限制,显著降低器件的写入电流和功耗。这一发现不仅为高效的轨道电子学器件提供了新的物理基础,也为整个自旋电子学领域带来了全新的设计思路。
利用“散射增强轨道流”这一反常物理效应(左图),实现自旋电子器件功耗的大幅降低(右图)。(中国科学院宁波材料技术与工程研究所供图)中国学者揭示了一项可显著降低自旋电子器件能耗的物理机制。中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队发现,利用电子“轨道”属性遵循的非传统标度律,能化电子运动阻力为性能增益。相关研究成果于北京时间8月15日在线发表于国际学术期刊《自然-材料学》。记者获悉,该研究成果为突破传统自旋电子学的性能瓶颈、设计超低功耗器件提供了全新的物理原理和设计思路。宁波材料所研究员汪志明介绍,随着人工智能与大数据的发展,传统电子技术正逼近性能极限,“功耗墙”成为制约技术发展的瓶颈。为此,科学家们将目光投向了自旋电子学这一前沿领域。新一代自旋电子器件在理论上具备了高速、非易失等优势,并被视为突破“功耗墙”的潜力技术。然而,影响自旋电子器件“自旋流”产生效率的两个关键指标,即自旋霍尔角和自旋霍尔电导相互制约,传统方法难以同时优化,导致器件总体写入功耗过高。宁波材料所团队取得关键突破,将目光转向了电子的另一属性——轨道。研究发现,当电子在材料中运动时,过去被认为是纯粹“绊脚石”的晶体缺陷,在与电子的轨道角动量相互作用时,反而起到了“加油站”的作用。引入的缺陷越多,电子散射越频繁,最终探测到的轨道效应反而越强。这揭示了一种全新的“反常标度律”,从实验上证实了电子“轨道”在输运过程中,遵循着与“自旋”截然不同的独特物理规律。该研究结果表明,利用“反常标度律”,通过主动引入缺陷,能够实现轨道霍尔角和轨道霍尔电导的同时增大,从而一举突破传统方法的限制,显著降低器件的写入电流和功耗。这一发现不仅为高效的轨道电子学器件提供了新的物理基础,也为整个自旋电子学领域带来了全新的设计思路。